Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1722: 464828, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581973

RESUMEN

The linkages of disulfide bond (DSB) play important roles in protein stability and activity. Mass spectrometry-based (MS-based) techniques become accepted tools for DSB analysis in the recent decade. In the bottom-up approach, after enzyme digestion, the neighbouring amino acids of cysteines have great impacts on the physicochemical properties of resulting disulfide bond peptides, determining their retention behaviour on liquid chromatography (LC) and their MS ionization efficiency. In this study, the addition of supercharging reagent in LC mobile phase was used to examine the impact of supercharging reagent on the charge states of disulfide-bond peptides. The results showed that 0.1 % m-nitrobenzyl alcohol (m-NBA) in LC mobile phase increased the sensitivity and charge states of DSB peptides from our model protein, equine Interleukin-5 (eIL5), as well as the resolution of reversed-phase chromatography. Notably, also the sensitivity of C-terminal peptide with His-tag significantly improved. Our findings highlight the effectiveness of employing m-NBA as a supercharging reagent when investigating disulfide-linked peptides and the C-terminal peptide with a His-tag through nano-liquid chromatography mass spectrometry.


Asunto(s)
Alcoholes Bencílicos , Disulfuros , Péptidos , Disulfuros/química , Alcoholes Bencílicos/química , Alcoholes Bencílicos/aislamiento & purificación , Péptidos/química , Péptidos/aislamiento & purificación , Animales , Caballos , Histidina/química , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Cromatografía Líquida de Alta Presión/métodos
3.
Sci Adv ; 5(7): eaaw8478, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31392273

RESUMEN

The mechanisms underlying the biogenesis of the structurally unique, binuclear Cu1.5+•Cu1.5+ redox center (CuA) on subunit II (CoxB) of cytochrome oxidases have been a long-standing mystery. Here, we reconstituted the CoxB•CuA center in vitro from apo-CoxB and the holo-forms of the copper transfer chaperones ScoI and PcuC. A previously unknown, highly stable ScoI•Cu2+•CoxB complex was shown to be rapidly formed as the first intermediate in the pathway. Moreover, our structural data revealed that PcuC has two copper-binding sites, one each for Cu1+ and Cu2+, and that only PcuC•Cu1+•Cu2+ can release CoxB•Cu2+ from the ScoI•Cu2+•CoxB complex. The CoxB•CuA center was then formed quantitatively by transfer of Cu1+ from a second equivalent of PcuC•Cu1+•Cu2+ to CoxB•Cu2+. This metalation pathway is consistent with all available in vivo data and identifies the sources of the Cu ions required for CuA center formation and the order of their delivery to CoxB.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Metalochaperonas/química , Metalochaperonas/metabolismo , Apoproteínas/metabolismo , Sitios de Unión , Bradyrhizobium/metabolismo , Cristalografía por Rayos X , Modelos Biológicos , Oxidación-Reducción , Dominios Proteicos , Relación Estructura-Actividad
4.
FEBS Lett ; 593(21): 2977-2989, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31449676

RESUMEN

The di-copper center CuA is an essential metal cofactor in cytochrome oxidase (Cox) of mitochondria and many prokaryotes, mediating one-electron transfer from cytochrome c to the site for oxygen reduction. CuA is located in subunit II (CoxB) of Cox and protrudes into the periplasm of Gram-negative bacteria or the mitochondrial intermembrane space. How the two copper ions are brought together to build CoxB·CuA is the subject of this review. It had been known that the reductase TlpA and the metallochaperones ScoI and PcuC are required for CuA formation in bacteria, but the mechanism of copper transfer has emerged only recently for the Bradyrhizobium diazoefficiens system. It consists of the following steps: (a) TlpA keeps the active site cysteine pair of CoxB in its dithiol state as a prerequisite for metal insertion; (b) ScoI·Cu2+ rapidly forms a transient complex with apo-CoxB; (c) PcuC, loaded with Cu1+ and Cu2+ , dissociates this complex to CoxB·Cu2+ , and a second PcuC·Cu1+ ·Cu2+ transfers Cu1+ to CoxB·Cu2+ , yielding mature CoxB·CuA . Variants of this pathway might exist in other bacteria or mitochondria.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/química , Bacterias/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , Transporte de Electrón , Redes y Vías Metabólicas
5.
J Am Chem Soc ; 141(2): 936-944, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30543411

RESUMEN

Multivalent carbohydrate-lectin interactions at host-pathogen interfaces play a crucial role in the establishment of infections. Although competitive antagonists that prevent pathogen adhesion are promising antimicrobial drugs, the molecular mechanisms underlying these complex adhesion processes are still poorly understood. Here, we characterize the interactions between the fimbrial adhesin FimH from uropathogenic Escherichia coli strains and its natural high-mannose type N-glycan binding epitopes on uroepithelial glycoproteins. Crystal structures and a detailed kinetic characterization of ligand-binding and dissociation revealed that the binding pocket of FimH evolved such that it recognizes the terminal α(1-2)-, α(1-3)-, and α(1-6)-linked mannosides of natural high-mannose type N-glycans with similar affinity. We demonstrate that the 2000-fold higher affinity of the domain-separated state of FimH compared to its domain-associated state is ligand-independent and consistent with a thermodynamic cycle in which ligand-binding shifts the association equilibrium between the FimH lectin and the FimH pilin domain. Moreover, we show that a single N-glycan can bind up to three molecules of FimH, albeit with negative cooperativity, so that a molar excess of accessible N-glycans over FimH on the cell surface favors monovalent FimH binding. Our data provide pivotal insights into the adhesion properties of uropathogenic Escherichia coli strains to their target receptors and a solid basis for the development of effective FimH antagonists.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Mananos/metabolismo , Manósidos/metabolismo , Adhesinas de Escherichia coli/química , Sitios de Unión , Escherichia coli/química , Proteínas Fimbrias/química , Cinética , Ligandos , Mananos/química , Manósidos/química , Unión Proteica , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA